THE EMBEDDED ARTIST PROJECT

SLOW CLEANUP: CIVIC EXPERIMENTS IN PHYTOREMEDIATION 2010-2012

A Special Project of:

The School of The Art Institute of Chicago

The City of Chicago

Frances Whitehead, Artist / Professor

Ha

1

ACKNOWLEDGMENTS

The SLOW Cleanup Project Team would like to acknowledge the generosity of the organizations and individuals who made the Embedded Artist Project and the SLOW Cleanup Project possible. We appreciate their spirit of adventure and creative collaboration:

- + Kevin Carroll,
- Chicago Department of Transportation
- + Paul Coffey, Vice Provost, SAIC
- + Chicago State University, USTEP Program Participants
- + Kathleen Dickhut, Deputy Commissioner, Chicago Department of Housing & Economic Development
- + Eddie's Food and Liquor Market
- + Greencorp Chicago Staff & Trainees
- + Matthew Guilford, Former Innovation Program Director, Chicago Department of Innovation & Technology
- + Michelle Harris,

Alderman, 8th Ward, Chicago

- + Dan Hatch, Architect
- + Ben Helphand, NeighborSpace
- + **Dr. Karel Jacobs**, CSU Professor of Urban Forestry
- + **Dr. Leroy Jones**, Principal Investigator, USTEP Program
- + **Barbara Koenen**, Project Manager, Chicago Department of Cultural Affairs and Special Events

+ Suzanne Malec-Mckenna,

Fomer Commissioner, Chicago Department of Environment

- + Dr. Walter Massey, President, SAIC
- + Douglas Pancoast, Until Architecture
- + Brendan M. Peterson, Tecnica Environmental Services, Inc.
- + Sandra Peterson, President Cottage Grove Heights Community Coalition
- + Judy Pollock, Bird Conservation, Audubon Chicago Region
- + **Prairie Moon Nursery**, Winona, Minnesota
- + Conner & Kelsay Shaw, Possibility Place Nursery
- + Dr. Elyssa Tenney, Provost, SAIC
- + Michael Thompson, Chicago Honey Co-op
- + Dr. Lisa Wainwright, Dean of Faculty

Book Design: by SAIC Alumnus, DJ Catrow, Loudmouth Design Co.

Cover Photo: Michelle Litvin Photography

ABOUT THIS REPORT

This report serves as final report for the **SAIC City Modeling Grant** funded by the **Chicago Department of Environment ComEd Grant Fund** No. 009-929-0722005-0005. The work of this grant was begun two years earlier through an inter-institutional experimental program **The Embedded Artist Project**, which serves as the framework engagement for all that follows.

CONTENTS

EMBEDDED ARTIST PROJECT - INTER-INSTITUTIONAL COLLABORATION

Dl > Collaboration

Embedded Artist Project Aims

Timeline

SAIC Project Interns

SUSTAINABLE BROWNFIELDS REMEDIATION PLAN (SLOW Cleanup)

- **D2** > Brownfields Innovation
- □∃ > Concept
- O4 ▷ Literature Review
- **□5** > Database Analysis
- OL ▷ Method
- **D7** ► New Knowledge
- **DB** > Recommendations
- **D9** Next Steps Extensions and Assessments
- **10** > Knowledge Dissemination

APPENDIX

- + A digital appendix of supporting documentation accompanies this Final Grant Report to the City of Chicago.
- + This documentation is not included in all printed copies of the report due to copyright and confidentiality obligations.

ILLUSTRATIONS

+ All diagrams, illustrations, and photographs are prepared by Frances Whitehead and the Chicago Brownfield staff from publicly available data, unless otherwise noted.

EMBEDDED ARTIST PROJECT INTER-INSTITUTIONAL COLLABORATION

The Embedded Artist Project (EAP), a two year pilot running from August 2008-August 2010, was a joint effort by the City of Chicago Departments of Planning, Environment, Innovation & Technology, and Cultural Affairs, and the School of the Art Institute of Chicago, to increase local government's ability to creatively address major systemic issues by embedding practicing artists in City departments at the management level. Initiated by SAIC faculty **Frances Whitehead** and managed by the CDoIT Innovation Program, the EAP pilot has led directly to further investigations and collaborations between SAIC and the City of Chicago, including the work funded by the ComEd SAIC City Modeling Grant for which this document serves as final report and documentation. These joint investigations between SAIC and the City of Chicago were begun during the Mayoral administration of **Richard M. Daley** and have continued into the administration of **Mayor Rahm Emanuel**. Plans to extend the ideas described in this report are expected to inform further collaborative efforts between SAIC and the City of Chicago in the coming years.

D L COLLABORATION

EMBEDDED ARTIST PROJECT AIMS

Innovation

- Utilize the innovation capacity of artists for civic innovation
- Provide new thinking early in program development process

Knowledge Transfer

Link academic research, methodologies and discourses (including theories and practices of innovation, creativity, knowledge production, and sustainability) to benefit the City

Civic Engagement

- Pilot new forms of partnering with underutilized Chicago Institutions, "knowledge assets," and communities of practice
- Explore the potential of "Civic Experiments" and "Participatory Research" in partnered projects

TIMELINE OF PLACEMENTS + FUNDING SOURCE

August 2008-April 2009 (SAIC Funded) Frances Whitehead

- Department of Planning
- Sustainable Division
- CMAP 2040 Food Plan Work Group

August 2008-August 2010 (SAIC Funded)

Adelheid Mers

- Department of Innovation and Technology
- Digital Excellence Action Agenda

April 2009-August 2010 (SAIC Funded) Frances Whitehead

- Department of Environment
- Urban Management and Brownfields Redevelopment Division (UMBR)
- Abandoned Service Station Program

August 2010-August 2012 (DOE 929 GRANT) Frances Whitehead

- Department of Environment
- Urban Management and Brownfields Redevelopment Division (UMBR)
- Abandoned Service Station Program

PROJECT INTERNS

Summer 2008-Spring 2009

- Lia Roussett
 - SAIC MFA Student, 2040 Food Plan

Summer 2009-Summer 2010

Nancy Fleischman

SAIC MFA Student, DoE Brownfields

Spring 2011

Ivan Martinez

SAIC MFA Student, Site Modeling

Summer 2011

Andrew Barco, Marissa Benedict,

Craig Butterworth, Sarah Floyd, Hellen Ascoli

SAIC MFA Students, Field Trials

Spring 2012-Summer 2012

Kim Harty

SAIC MFA Student, File Archive Organization

Summer 2012

Meghan Quinn

SAIC Alumna Site Typologies Graphics

Emily Adamson

Janyne Little

Purdue University Students, Lab Trials

Arthi Puri

- Rani Iyer
 - West Lafayette H.S. Students, Lab Trials

SUSTAINABLE BROWNFIELDS REMEDIATION PLAN - SLOW CLEANUP

RESEARCH DIRECTIVE

Suzanne Malec-Mckenna,

Former Commissioner of the Environment

Commissioner Malec-Mckenna directed the UMBR Project Team to investigate the following questions:

Theory:

What is a cutting-edge, sustainable brownfield cleanup?

How can Chicago move beyond the "state of the science" and "state of the practice"?

Practice:

How can UMBR Staff gain direct experience with alternative and/or bio-remediation pro-cesses?

What do we need to know?

Sites:

What can be done with Chicago's 400+ Abandoned Service Station Properties (ABNSS)? Is this a candidate for "Asset-based Planning?"

PROJECT TEAM

Urban Management and Brownfields Redevelopment (UMBR) + Research Collaborators

Kimberly Worthington

Deputy Commissioner, UMBR

David S. Graham

▶ P.G., Environmental Engineer III UMBR

Frances Whitehead

- CDoE Embedded Artist
- Professor, School of the Art Institute of Chicago

Dr. Arthur Paul Schwab

- Professor, Phytoremediation Soil Science Texas A&M University (since 7. 2012)
- Purdue University (until 7. 2012)

Phytoremediation processes for petroleum

DZBROWNFIELDS INNOVATION

ENGAGEMENT

This collaborative project began as a placement of the Embedded Artist Project and has been extended under the SAIC City Modeling Grant. During the Literature Review phase of the Project, Dr. A.P. Schwab began to advise and subsequently became a full collaborator on the project.

CLEAN-UP

Civic Experiments with Phytoremediation

Ω

[BROWNFIELDS INNOVATION]

PROJECT OVERVIEW:

SLOW Cleanup is a whole systems approach to site remediation designed to increase the net benefits from plant based phytoremediation processes. Piloting the use of ornamental, flowering, and fruiting plants, along with the typical agronomic plants most associated with phytoremediation, this enhanced cleanup program aims to increase the plant palette and site preparation methods for this alternative approach.

Working together with academic, community, and conservation partners, the City of Chicago has established Field Trial test plots of 80 previously untested plant species in Summer 2011 and a parallel Lab Trial at Purdue University of the same species. New remediative landscape typologies (swatches) can be modeled using the new plant remediator species from these trials. These designs might be executed on the small ABNSS parcels or any other hydrocarbon impacted site.

PROJECT AIMS/GOALS

New Values, New Models, New Practices, New Knowledge

- Move remediation from an "environmental" model (greener cleanup) to a fully "sustainable" model
- Extend current hydrocarbon phytoremediation science and soil conservation methods
- Design, execute, and assess a City of Chicago directed phytoremediation program
- Demonstrate "asset-based" planning. Leverage under-utilized assets such as time, land, citizen/ partner participation
- Capture knowledge recommend new "best practices", disseminate information

"INTERIM USE" CONCEPT - "TIME" IS AN ASSET

	SMALL MINIMAL INTERVENTION	MEDIUM	LARGE MAXIMAL INTERNVENTION
SCENARIOS	TEMPORARY	INTERIM	PERMANENT
TIME FRAME FOR REMEDIATION (ESTIMATE)	FAST TURN AROUND 1-3 YEARS	SHORT TERM 3-5 YEARS	MEDIUM TERM 3-5 YEARS
TIME FRAME FOR NET BENEFITS (ESTIMATE)	SHORT TERM 3 YEARS	MEDIUM TERM 5-10 YEARS	10 YEARS INDEFINITE
TOXINS AND SOIL	SHALLOW EVENLY DISPERSED	DIRTY SITE WITH UNEVEN DISTRIBUTION OF TOXINS	MULTIPLE HOT SPOTS AND DEPTH OF TOXINS -PLUMES LIKELY
PLANT TYPE	ANNUAL PLANTS, AGRONOMIC SPECIES, KNOWN REMEDIATORS	WOODY SHRUBS, PERENNIALS, PRAIRIE FORBS, LIKELY REMEDIATORS	SPECIAL PLANTING FEATURES REFLECTS LONG TERM
ECOLOGIC, ECONOMIC, SOCIO-CULTURAL OPPORTUNITIES	ECONOMIC FOCUSED, LIKELY TO BE RE-DEVELOPED	MORE POTENTIAL FOR VISUAL INTEREST AND SOCIO CULTURAL	EXCELLENT PROGRAM POTENTIAL GREATEST ENVIRO BENEFITS
COST TO INSTALL	LESS EXPENSIVE	MEDIUM COST	EXPENSIVE
MAINTENANCE	"CROP" APPROACH REQUIRES ANNUAL RESEEDING	NEEDS CARE TO ESTABLISH LESS CARE TO MAINTAIN	LONG TERM MAINTENANCE LESSENS WITH MATURITY
TOTAL COSTS AND TIME	LEAST		MOST

CONCEPT DESIGN - KEY ELEMENTS

After a thorough literature review on petroleum phytoremediation science and practice, a program concept was devised that foregrounded the following elements:

"Interim Use" repurposes petroleum contaminated properties

- Likens process to "SLOW Food" movementalternative to "fast cheap easy" approach
- Embraces "time" as an asset and cultural value
- Small parcels well suited as test sites for 5-10 approaches to "phytoscapes".

Onsite soil re-use prevents sending soil to landfill

- An alternative to "dig and dump" methods
- Recycle site asphalt and concrete pavement
- Turns site gravel into native soils with organic amendments

"Net Benefits" model for Brownfields

- Integrates "tangible" and "intangible" benefits - integrates qualitative and quantitative approaches
- Based on the UN "4 pillar" model of Sustainability adds more value(s)
- Adds community participation into the usual economic/environmental remediation criteria

- Demonstrates economic potential of enhancing habitat, ornamental, and social improvements
- Designed Civic Experiment- Public
 Research Concept- participatory outreach
- 3 Scales of intervention relates to complexity and budget

"Un-development"- flip the script

- Unlike the industry standard of "fast cheap easy" this concept asserts that additional uncharted costs are incurred by leaving sites partially paved
- If ABNSS sites were fully "undeveloped" and restored to productive green infrastructure, the petroleum would naturally "attenuate"
- In urban areas with little or no re-develoment pressure, the most economical strategy is to see these sites as a land-bank (as assets), which can be optimized if fully "un-developed"

DESIGN SCENARIOS

Interim Use Design Schemes are categorized, based on cost, amount of work required to install plants, duration of site maintenance and level of ongoing monitoring and evaluation.

(SMALL) 2 to 3 year Time Frame / Lowest Cost and Impact:

- Minimal site preparation limited concrete/ asphalt removal and onsite maintenance
- Low cost plant installation and ongoing maintenance - vigor based plant selection
- Minimal site improvements

(MEDIUM) 3 to 6 year Time Frame / Moderate Cost and Impact:

- Site preparation Removal or amendment of concrete and engineered fill (gravel, etc)
- Varied horticultural plant installation and seasonal plant maintenance
- Limited aesthetic site improvements (fencing and education signage)
- Annual monitoring of soil remediation

(LARGE) 6 to 10 year Time Frame / Highest Cost and Impact:

- Extensive removal of historic structures and intensive soil preparation
- Plant installation varied, including longterm fruiting plants and trees
- Aesthetic site improvements (ornamental fencing, land contouring, educational features)
- Detailed evaluation and site monitoring

[CONCEPT]

DESIGNED PLANTINGS

Can be developed to illustrate the 4 pillar model of sustainability to include:

Cultural Vitality

- Visual Appeal
- Sensory
- Enhancement
- Experiential Learning

Environmental Responsibility

- Native Plant Species
- Habitat Creation
- Soil Remediation

Social Equity

- Urban Agriculture
- Workforce
 Development
- Civic Engagement

Economic Health

- Urban Forestry
- Neighborhood Revitalization
- Biofuel Evaluation

CHALLENGES TO THE NET BENEFITS APPROACH:

- Need to improve understanding / knowledge of natural processes
- Different from "standard" engineering practices
- Takes longer to achieve target habitat than an "engineered" vegetative cover
- Requires the use of professionals not typically consulted (paradigm shift)
- Requires site-specific planning and design considerations not usually considered

Bruce R Pluta, US EPA Region 3, 2009

PRELIMINARY BUDGET PROJECTIONS

ENHANCED PHYTO-REMEDIATION

Enhanced Phyto Project - "Universe of Costs"

Estimated Per Site Cost by Scope	SMALL			MEDIUM				LARGE			
	2 to 3 Year Time Frame		3 to 6 Year Time Frame				6 to 10 Year Time Frame				
	Lowe	st Impac	t	Moderate Impact				Highest Impact			
Proposed Tasks	no maintenance	w/ m	aintenance	no	maintenance		w/ maintenance	r	no maintenance	w/	maintenance
Work By DOE											
Site Evaluation	\$ 10,000.00	\$	10,000.00	\$	15,000.00	\$	15,000.00	\$	25,000.00	\$	25,000.00
Site Preparation	\$ 25,000.00	\$	25,000.00	\$	55,000.00	\$	55,000.00	\$	90,000.00	\$	90,000.00
Installation	\$ 25,000.00	\$	25,000.00	\$	60,000.00	\$	60,000.00	\$	80,000.00	\$	80,000.00
Annual Monitoring	\$ 30,000.00	\$	30,000.00	\$	50,000.00	\$	50,000.00	\$	135,000.00	\$	135,000.00
Work by DOE or Partners											
First Year Maintenance		\$	15,000.00			\$	15,000.00			\$	20,000.00
Ongoing Maintenance		\$	10,000.00			\$	50,000.00			\$	90,000.00
Per Site / Per Scenario	\$ 90,000.00	\$	115,000.00	\$	180,000.00	\$	245,000.00	\$	330,000.00	\$	440,000.00

Proposed Site Concepts and likely cost range for each concept type

Concept		Rang	e of (costs low to	hig	h					
Agronomic plants	S	\$ 90,000.00	\$	115,000.00							
Gridded cement	S	\$ 90,000.00	\$	115,000.00							
Biofuels	S - M	\$ 90,000.00	\$	115,000.00	\$	180,000.00	\$	245,000.00			
Fragrance	S - M	\$ 90,000.00	\$	115,000.00	\$	180,000.00	\$	245,000.00			
Bird thicket (allees)	M				\$	180,000.00	\$	245,000.00			
Prairie perennials	M				\$	180,000.00	\$	245,000.00			
Bosque	M				\$	180,000.00	\$	245,000.00			
Pollinator scape	M - L				\$	180,000.00	\$	245,000.00			
Test plots	M - L				\$	180,000.00	\$	245,000.00	\$	330,000.00	440,000.00
Winter color (mounds)	L			Rang	e of	costs low	to hig	h	\$	330,000.00	440,000.00
Fruiting/ urban ag	L								\$	330,000.00	440,000.00
								Rang	e of c	osts low to h	nigh

4 low impact sites \$

360,000.00 \$ 230,000.00

5 medium impact sites \$ 900,000.00 \$ 1,225,000.00

3 high impact sites \$ 660,000.00 \$ 880,000.00

Costs if all typologies Executed	All	11 low end	All 11 high end			
	\$	360,000.00	\$	230,000.00		
	\$	900,000.00	\$	1,225,000.00		
	\$	660,000.00	\$	880,000.00		
	\$	1,920,000.00	\$	2,335,000.00		

[CONCEPT]

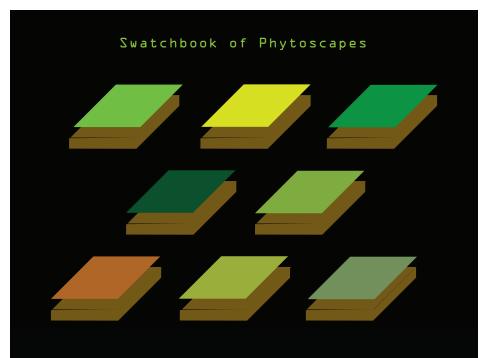
STATE OF THE SCIENCE - FINDINGS

Technology literature review

- Hydrocarbon remediation is the product of microbial activity enhanced by root exudates
- > Phenolic root exudates are suspected to be contributors to the process
- No semi-volatile hydrocarbon uptake offers many unexplored opportunities for urban agriculture and habitat
- Most plants with vigorous root structures are likely to remediate

"Known and Suspected Remediator" database created

- 100+ species from 200+ studies were reviewed by Dr. Paul Schwab from publicly available data
- Known hydrocarbon remediators were revealed to be limited to a few agronomic plants, especially grasses and monocots
- Non-agronomic plants including ornamental, habitat, fruit bearing and prairie forbs remain largely untested

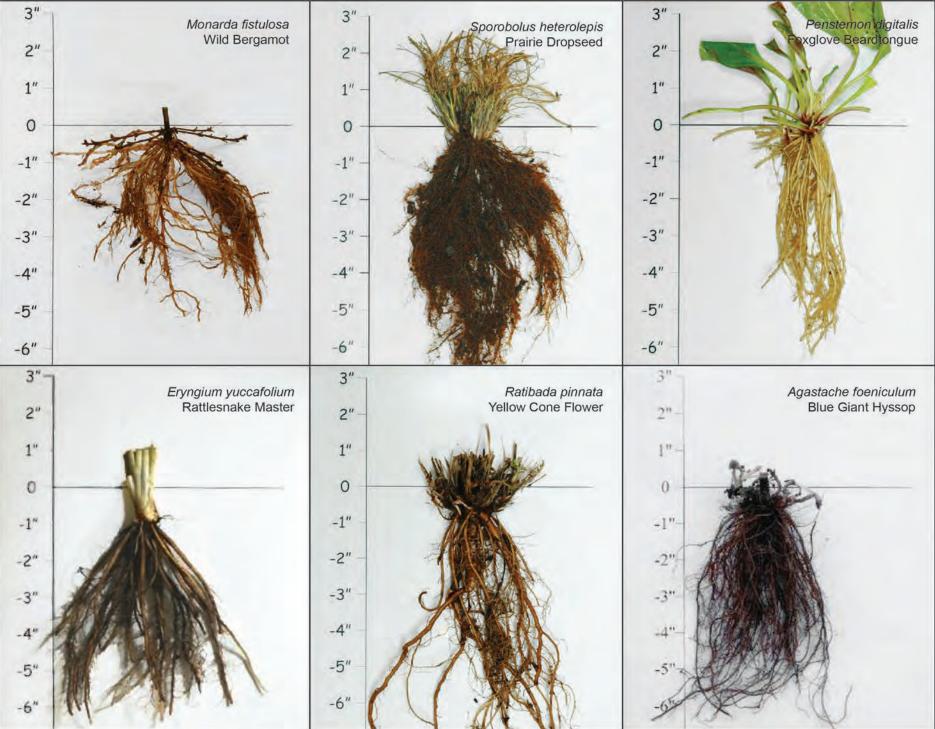

Existing studies of native flowering prairie forbs, shrubs, trees

- Clayton Rugh, 2003 Study in River Rouge, Michigan
 - + Preliminary results not conclusive but promising
 - + Limited species similar in scope to our study
- David Tsao, 2009 Study of PAH tolerance for British Petroleum
 - + Tested tolerance not remediation

STATE OF THE DISCOURSE - FINDINGS

Multi-criteria, values-based planning

- Planners are trending towards a "systemic" understanding, which differentiates sustainable from "greener" clean-up models.
- > Many organizations are considering *two* criteria or values such as:
 - + Aesthetics effecting socio-cultural outcomes
 - + Habitat improvement affects social and biologic outcomes
 - + Aesthetics and habitat can reverse negative perceptions around site reuse that affects economics of the site and redevelopment in the vicinity
- No one has connected all these aspects in one program concept


DLIITERATURE REVIEW

Land use typologies need to be expanded for new urban functions

- ▶ Few available land use typologies have been used as basis for remediation site design
- > Current thinking privileges large parcels but habitat patches and green corridors are equally important
- > Small parcels on prominent corners can have big impacts on human and animal communities

Ecological	Land Use Planning	Vernacular	Other
Upland Forest	Yards / Greens	Thicket	Phytoscape
Oak Woodland	Gardens / Courts	Big Hedge	Urban Wild
Wetland	Parks	Lawn	Bird Scape
Riparian	Frontages	Woods	Intermediate Landscape
Edge Condition	Athletic Fields	Tree Lot	Linear Landscape
Prairie	Open Space	Bird Gardens	Artscape
Grassland	Evergreen	Forest Margins	Moundscape
Dune Complex	Ornamental	Flower Garden	Locus Amenus
Savanna	Fruiting	High Fence	Allees for Vistas
Wooded Community	Urban / Rural/ Suburban	Low Fence	5 Senses Landscape
Shrubland	Conduit	High Wall	Grove / Bosque
Corridors	Strips / Edges	Low Wall	Orchard
Greenways	Pocket Wilderness	Hedges	Fruiting Shrubs
Edgeland	Urban Ecosystem	Gates	Flowering Shrubs
Bird Rest Stops	Wooded Ancient	Used by the Public	Briar Patch
Intermediate Patch	Wooded Estate Land	Used by Animals	Phenoscape(Climate)
Interstitial Areas	Wooded Secondary	Ball Fields / Courts	Bugscape (Bees)
Dispersed Unwooded	Commons	Walk / Path	Biofuel Zone
Nucleated Unwooded	Central Square	Farmers Markets	Botanic Garden
Habitat	Wet and Waste Unwooded	Memorials	Meadow
Nut And Fruiting Plants	Unsettled Open Land	Parkway	Research Landscape

SWATCH BOOK

PLANT DATABASE

New "Candidates Remediator" Plant Species Database created

- ▶ 475 species were assembled, listed and assessed by multiple native plant and horticulture specialists
- Evaluation criteria included: appearance, vigor, availability, root morphology, prior study, phenolic content, habitat enhancement, alkalinity tolerance, net benefits

Root Typology Photo Archive reviewed

- Scaled photographs of all major native plant species supported the plant species assessment
- Provided pro bono by Prairie Moon Nursery, Winona, Minnesota

New Likely Remediator Plant Species selected for study

- ▶ 80 species of largely native trees, shrubs and perennial forbs were selected for study
- Grasses excluded from study as "known remediators" except 3 species as a cross reference
- Species were selected to produce the 10 site typologies under consideration

	NATIVE
TREES	
SCIENTIFIC NAME	COMMON NAME
 Amelanchier arboria Amelanchier laevia Asimina triloba Cercis canadensis Crataegus crus gali Dospyros virginiana Jugians nigra Juniperus communis Malus domestica Malus domestica Prunus cerasus Prunus cerasus Prunus sentatina Quercus bicolor Quercus bicolor Quercus muelenberghi Syringa vulgaris Sarah Sands 	Downy Serviceberry Shad Bush Paw Paw Redbud Hawthorn American Persimmon Witch Hazel Nut Tree (Walnut) Common Juniper Edible Apple Prarie Crab Edible Cherries (Sour) Wild Plum Black Cherry White Oak Chiquapin Oak Common Lilac
SHRUBS	6011101 N.1.15
SCIENTIFIC NAME	COMMON NAME
Amorpha canescens	Lead Plant-Ironwood
	False Indigo, Indigobush
Aronia melanocarpa Cephalanthus occidentalis	Black Chokeberry Buttonbush
Comus alba "Buds yellow"	Yellow Twig Dogwood
5 Cornus alua Buus yellow	Rough-leaved Dogwood
Comus stolonifera C sericea	Red-osier Dogwood
Corvlus americana	American Hazelnut
Diervilla lonicera	Dwarf Bush Honeysuckle
Forsythia spp. X Intermedia	
Physocarpus opulifolius	Common Ninebark
Rhus aromatica	Fragrant Sumac
Ribes americana	Wild Black Currant
Rosa blanda	Early Wild Rose
Salix humulis	Prairie Willow
Sambucus canadensis	Elderberry
Viburoum dantatum	Arrowhead Viburnum

NATIVE "LIKELY REMEDIATOR" SPECIES TESTED

FORBS

SCIENTIFIC NAME COMMON NAME 1 Achillea sp. Yarrow 2 Agastache foeniculum 3 Agastache nepetoides 4 Andropogon gerardii **Big Bluestem** 5 Andropogon scoparius Little Bluestem 6 Asclepias syriaca 7 Asclepias tuberosa 8 Asclepias verticillata 9 Aster ericoides 10 Aster laevis 12 Aster novae-angliae 13 Baptisia australis 14 Cirsium discolor 15 Echinacea pallida 16 Echinacea purpurea 17 Eryngium yuccifolium 18 Eupatorium maculatum 19 Funatorium perfoliatum Boneset 20 Eurphorbia 21 Geum triflorum 22 Helianthus giganteus 23 Helianthus mollis 24 Helianthus rigidus 25 Helianthus tuberosus 26 Heuchera richardson 27 Liatris aspera 28 Liatris pycnostachya 29 Monarda fistulosa 30 Monarda punctata 31 Nepeta cataria Catnip 32 Oenothera missoriensis 33 Penstemon digitalis 34 Petalostemum purpureum 35 Physostegia virginiana 36 Ratibada pinnata 37 Rudbeckia subtomentosa Sweet Black-eved Susan 38 Rudbeckia triloba Brown-eyed Susan 39 Salvia azurea var. pitcherii Pitchers Sage

40 Sanguisorba canadensis LavenderBlueGiant Hyssop 41 Silphium integrifolium Yellow Giant Hyssop 43 Silphum laciniatum 44 Solidago missouriensis

45 solidago ohioensis

46 solidago speciosa

48 Verbena hastata

49 Verbena stricta

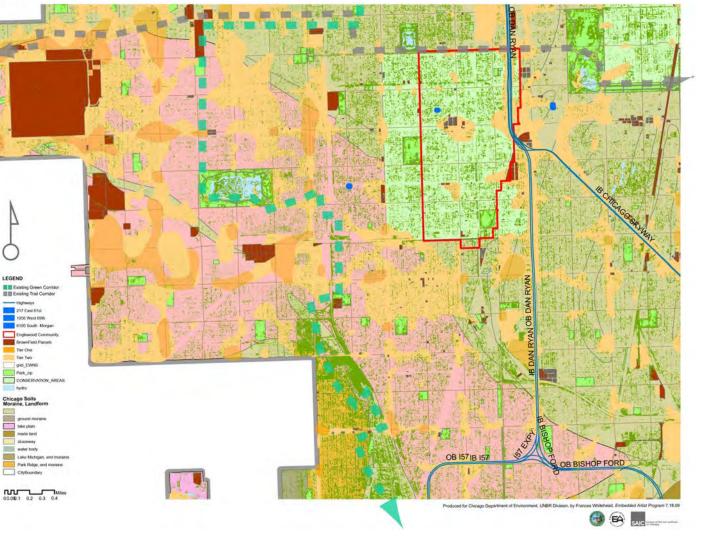
Common Milkweed Butterfly Plant Whorled Milkweed Heath Aster Smooth Blue Aster New England Blue Wild False Indigo Pasture Thistle Pale Purple Coneflower Purple Coneflower **Rattlesnake Master** Joe Pye Weed Which One? Prairie Smoke Tall Sunflower **Downy Sunflower** Prairie Sunflower Jerusalem Artichoke Alum Root **Rough Blazing Star** Prairie Blazing Star Wild Bergamot (Bee Balm) Horse Mint **Evening Primrose** Foxglove Beardtongue Purple Prairie Clover **Obedient** Plant Yellow Coneflower

SCIENTIFIC NAME COMMON NAME

- American Burnet Rosin Weed 42 Silphium terebinthinaceum Prairie Dock Ohio Showy 47 Sporobolus heterolepis Blue Vervain Hoary Vervain 50 Vernonia fasciculata Ironweed 51 Veronicastrum virginicum
 - Compass Plant Missouri Goldenrod Prairie Dropseed Culver's Root

[DATABASE ANALYSIS]

SITE DATABASE ANALYSIS

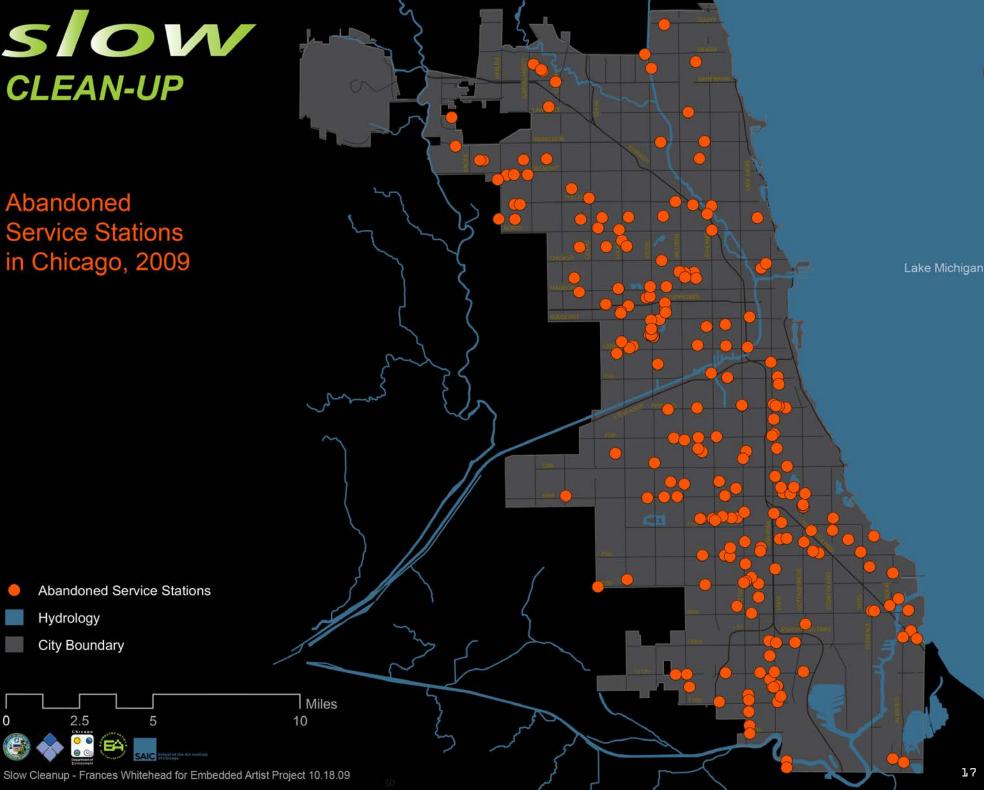

Abandoned Service Station Inventory Review

- 400 City controlled sites were assessed as candidate sites for the program
- Criteria for selection included: geotechnical, community, location, geographic distribution in city, soils, contaminant types and locations, important adjacencies, documentation, and relationship to partners and neighborhoods

Final Site Selection

- Contextual GIS Mapping studies were performed to identify opportunities and adjacencies for potential remediative landscapes
- Partnerships and potentials were assessed from these adjacencies
- 25 sites were selected for in-depth soil and contamination review
- ► 10 candidate sites were identified as suitable for the program

Phytoremediation Site Selection Study for Abandoned Gas Station 1.2 Heat Island + Green Corridor + Urban Ag Potential for Englewood Area


slow **CLEAN-UP**

Abandoned **Service Stations** in Chicago, 2009

Hydrology

2.5

0

Purdue student sorts remediated soils in preparation for residual petroleum analysis

1510

a.d

PILE

THE P

P

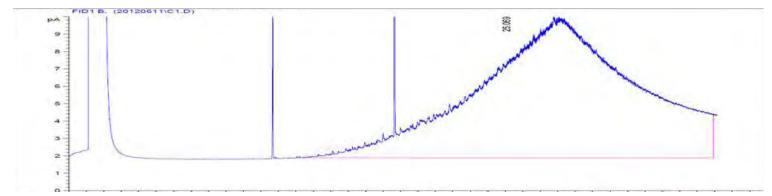
TECHNOLOGY + METHODOLOGY RESEARCH

KEY ELEMENTS

The Phytoremediation Plant Trials has five components:

- 1. The controlled lab trial to test actual petroleum dissipation per species
- 2. A complementary field trail to test plant vigor and adaptability
- 3. An experimental site soil preparation method
- 4. A community engagement and visitor informed site design
- 5. An educationally focused field trails installation process

1) LAB TRIALS - PROOF OF THE CONCEPT


Structure of the Lab Trials

A greenhouse study was initiated in the summer of 2011 to test a broad array of plant species that had not been evaluated previously for phytoremediation potential. The species were chosen to fulfill a number of roles in horticultural/urban agriculture landscapes. A limited number of species that had been tested previously (e.g., big bluestem, little bluestem, purple coneflower, tall sunflower) were included to verify that the experiment was executed successfully.

- 80 plant species grown in soils treated with motor oil as a surrogate for petroleum hydrocarbons (TPH - Total Petroleum Hydrocarbons)
- ► The soil used was an agricultural soil from Indiana
- ► Target concentration: 4000mg TPH/kg soil
- ▶ 1.6 kg of soil added to greenhouse pots
- ► Plants placed in the soils
- ► After seven months of watering and fertilization, pots sacrificed
- ► Soils exhaustively extracted with dichloromethane
- TPH determined by gas chromatography with flame ionization detection

Benchmark soil samples were:

- + contaminated soil kept dry and cool for the duration of the experiment;
- + unplanted soil treated in the same way as planted soils (placed in pot, watered, fertilized)


Gas chromatogram of a soil extract

[METHOD]

2) FIELD TRIALS - SITE CONDITIONS

The Cottage Grove Heights Laboratory Garden 98th Street and South Cottage Grove Avenue Abandoned Service Station PIN: 25-11-117-023-0000

A large 5 parcel abandoned gas station property adjacent to Chicago State University (CSU) in the Cottage Grove Heights neighborhood of the 6th ward in south Chicago was selected for the Field Trials. Selection criteria for this site included its adjacency to CSU, the existence of native silty clay soils on site, and the geotechnical and regulatory status of the site. Many soil borings and site measurements had been conducted over the last decade providing background data including data that supported the Phase1, Phase2 and NFR letter that constituted the site dossier. The site had been remediated to meet industrial/ commercial TACO standards, and thus provided the opportunity to use phytoremediation to move the site soils towards residential standards.

Soil Amendments Specifications

The principal aims of the in-situ soil preparation was:

- Keep all non-recyclable materials on site and out of landfills
- Identify a mechanical method for turning the hard-packed gravel layer into the soils under neath to at least 30inches in depth
- Turn an equivalent volume of organic matter (compost) into the top 12inches of soil, based on the onsite volume of gravel, sand, or excavation stone

Free petroleum lens in soil

Existing Conditions and Planting Soil Requirements

Working in concert with Dr. AP Schwab and the environmental team from Technica Environmental, soil and gravel volumes at the field trials site on South Cottage Grove were sampled and calculated.

- 3 types of site conditions, typical for ABNSS properties in Chicago, were observed:
 - 75% of the site contained 6 inches of crushed limestone base under 3 inches of asphalt
 - 2) 20% of the areas contained concrete pavement over a sand base rather than crushed stone, including a building foundation artifact
- 5% of the site was a tank excavation where the underground gasoline storage tank (UST) had been removed. In this area, native soils were returned to the excavation and the tank volume was replaced with a stone mixture typical of this application
- Lenses of free petroleum were observed, along with petroleum odor, once the pavement was removed during the soil preparation process
- Sitewide, first succession plant species had built up topsoil to a depth of 3 inches in most areas

Typical soils on gas station sites

[METHOD]

3) SOIL PREPARATION METHOD CONTINUED

Soil Preparation Methodology

The following steps were employed at the Cottage Grove Heights Laboratory Garden to prepare the soil. The entire process was executed in three 8 hour work days.

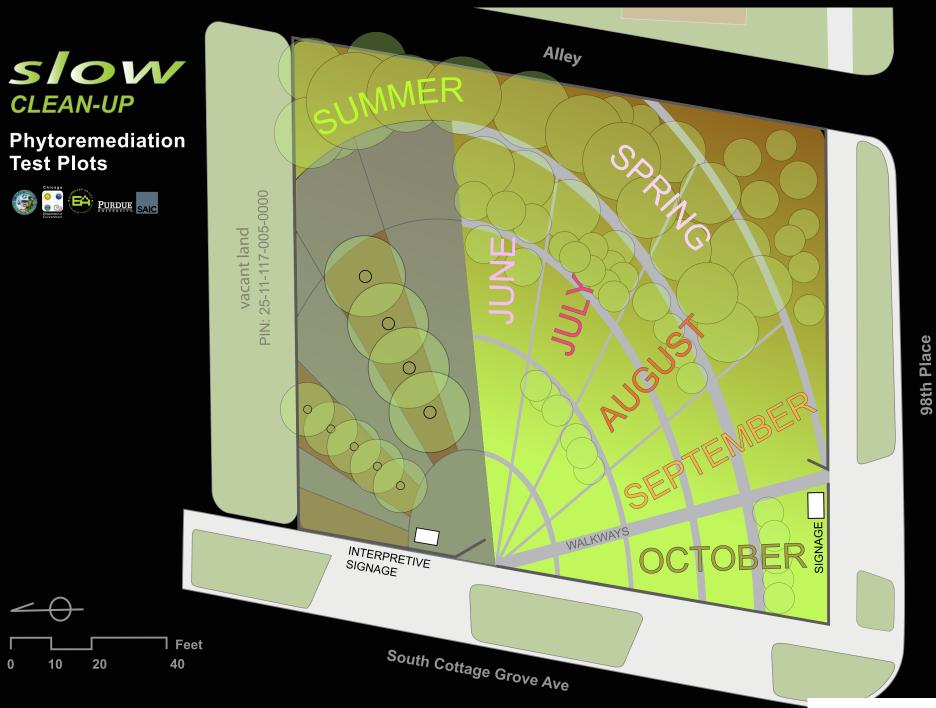
Step 1 - Day 1

- Using hydraulic excavator and skid steer equipment remove, transport and recycle 200 tons of concrete surface pavement from the site and all subsurface concrete foundations
- Saw cut concrete/asphalt pavement along property line as necessary to facilitate clean removal
- Remove and store existing chain link fence for re-installation
- Load out, transport and dispose (at sub-title D landfill) 220 tons of asphalt

Step 2 - Day 2

- Using a front end loader, excavate gravel from UST area and mix with subjacent soil at approximate 1:1
- Ratio and backfill within UST excavation
- Scrape and stockpile gravel at north end of site for later use
- Received initial truckloads of compost and begin spreading on north end of site

Step 3 - Day 3


- Using the Wirtgen 2400 soil stabilizer, mix existing site surface gravel and soil to depth of approximately 20 inches below grade (maximum depth of tilling blades)
- Uniformly spread compost throughout site and make a second pass with the Wirtgen 2400 to re-mix to depth of approximately 15 inches, producing the required 30 inches turned depth
- Continue to receive truckloads of compost synchronized to stay ahead and clear of Wirtgen 2400 tilling
- Re-spread stockpiled gravel uniformly throughout lots 6&7
- Re-install removed existing fence without footers as a temporary fence awaiting new black iron fencing

98th Place

Site design - bloom sequence

[METHOD]

4) COMMUNITY ENGAGEMENT AND SITE DESIGN

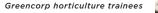
Local Participation

Development of the 98th Street and South Cottage Grove field trials site has been conducted in conversation with the *Cottage Grove Heights Community Coalition* (CGHCC), through President, Sandra M. Patterson and the Board of Directors

- The CGHCC named the site the Cottage Grove Heights Laboratory Garden, creating a new concept, of community garden and identifying that they were playing the role of "host" for the Laboratory Garden.
- 8th Ward Alderman, Michelle A. Harris, has funded an ornamental fence to surround the site, increasing its visual appeal and value to the community

Field Trials (lab gardens) Design

The site design for the prototypic Community Laboratory Garden utilizes a dramatic radial grid, centered on the main streetscape. This design device provides a grid structure for the scientific plant Field Trials and also privileges visual access and legibility for the community and site visitors. A reversal of the "power dynamics" associated with such grand geometric space plans, the site design concept integrates technology, aesthetics, community engagement, and passive economic benefit through design, while contributing to overall greenspace for the city and its inhabitants.


- Site design is a radial grid for visual interest and legibility from outside the site fence
- The radial grid also references the gridded organization of conventional test plots but is oriented towards both the passive viewer, and the scientific observer, while remaining accessible to tending
- The grid and maintenance walks are edged for

a tidy look in contrast to the dense plantings

- Perennial plugs were planted 1 foot on center for ease of future observations and calculations
- Site design laid out by plant type as well as bloom time to visualize seasonality
- Social engagement, community outreach, participatory research, and job training programs were considered in the design of site, along with appearance and legibility
- Site fencing and signage add interpretation and visuals to be completed Fall 2012

Joh

4) COMMUNITY ENGAGEMENT AND SITE DESIGN CONTINUED

- The Field Trials soil preparation was followed by a conventional site grading, layout and planting
- Plants used for the Field Trials were the 80 test species referenced above in Section 5
- Field Trials may or may not remediate the test site. The primary purpose is to test soil prep methods, plant vigor, hydrocarbon tolerance of plants, ornamental appeal, and adaptability to soil as amended
- The Field Trials woody plants were planted in Spring 2011 and the perennial forbs were planted Summer 2011 by the groups described below

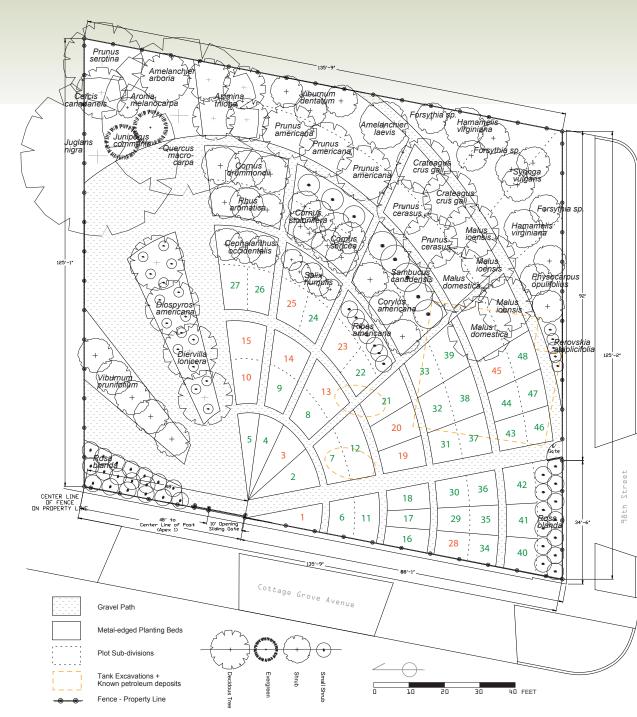
5) FIELD TRIAL INSTALLATION

Educational Programming in Horticulture, Site Specific Sculptural Practices, Urban Soil Science

Four groups of students and trainees were involved in the planting and analysis of the Field Trials Site and the Lab Trials

1) Site Planting and Detailing

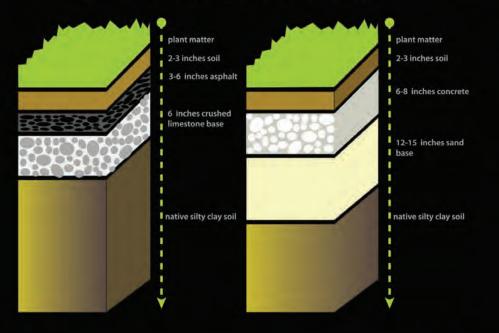
- Greencorp Chicago, Chicago's community landscaping and job training program executed the majority of the site landscaping tasks.
 - The trainees installed all large woody shrubs and trees, many of the perennial forb plugs and installed the gravel walkways on site.
 - + The installation was overseen by Greencorp professional staff horticulturists

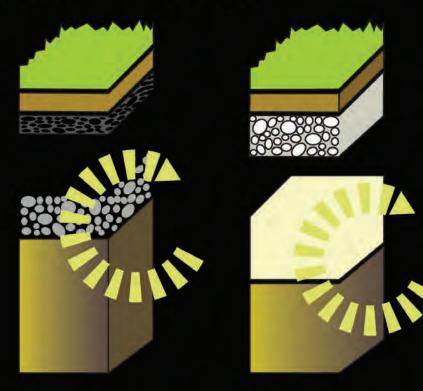

- + This extensive "in kind" contribution of labor and expertise is not reflected in the project budget, (see page 11) and would add additional cost to a project where such in-kind support was not available
- School of the Art Institute of Chicago students and faculty installed the "sculptural" elements of the build-out
 - This included detailing the metal edging grid, fine tuning the soil grade, and the use of planting gigs for the plant spacing
 - + SAIC students planted the most visually precise portions of the perennial forb plugs and contributed to on-site design finalization
 - Several SAIC graduate student interns have conducted site plant count monitoring through August 2012, the Grant period

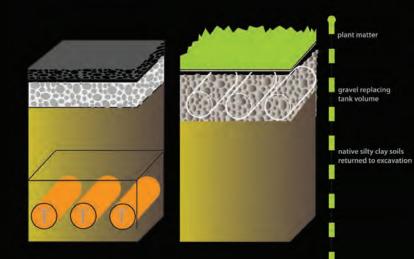
2) Site and Soil Analysis

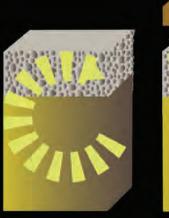
- Chicago State University students conducted initial site soil analysis in 2010 and 2011 under the supervision of Dr. Karel Jacob
 - Students participated via the Urban Science, Technology, Engineering, Mathematics Talent Expansion Program (USTEP) Program
- Purdue University Soil Science students conducted all aspects of the phytoremediation plant lab trials under the supervision of Dr. AP Schwab
 - In the Schwab lab and greenhouses, students assisted with regular plant assessments, plant and soil extraction and analysis

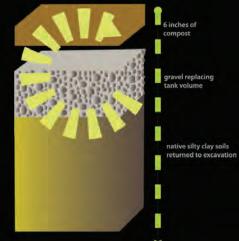
FINAL PLANTING LAYOUT


Plot #	Scientific Name	Common Name
1	Heuchera richardsonii	Alum Root
2	Ruellia humulis	Wild petunia
3	Eryngium yuccifolium	Rattlesnake Master
4	Geum triflorum	Prairie Smoke
5	Zizia aptera	Golden alexander
6	Petalostemum purpureum	Purple Prairie Clover
7	Eurphorbia corollata	Large flowering spurge
8	Salvia azurea var. pitcherii	Pitchers sage
9	Veronicastrum virginicum	Culver's Root
10	Penstemon digitalis	Foxglove Beardtongue
11	Aster ericoides	Heath Aster
12	Liatris pycnostachya	Prairie blazing star
13	Monarda punctata	Horse Mint
14	Ratibada pinnata	Yellow Coneflower
15	Echinacea pallida	Pale purple coneflower
16	Aster laevis	Smooth Blue Aster
17	Helianthus mollis	Downy Sunflower
18	Helianthus giganteus	Tall Sunflower
19	Nepeta cataria	Catnip
20	, Monarda fistulosa	wild bergamot (bee balm)
21	Verbena hastata	Blue Vervain
22	Sanguisorba canadensis	American burnet
23	Oenothera biennis	Evening Primrose
24	Asclepias syriaca	Common milkweed
25	Achillea sp.	Yarrow
26	Echinacea purpurea	Purple Coneflower
27	Geranium maculatum	Wild geranium
28	Sporobolus heterolepis	Prairie Dropseed
29	Schizachyrium scoparium	Little Bluestem
30	Andropogon gerardii	Big Bluestem
31	Eupatorium maculatum	Joe Pye Weed
32	Vernonia fasciculata	Ironweed
33	Asclepias incaranata	Swamp milkweed
34	Rudbeckia triloba	Brown-eyed Susan
35	Solidago speciosa	Showy goldenrod
36	Rudbeckia subtomentosa	Sweet Black-Eyed Susan
37	Silphium laciniatum	Compass Plant
38	Eupatorium perfoliatum	Boneset
39	Verbena stricta	Hoary Vervain
40	Liatris aspera	Rough blazing star
41	Aster novae-angliae	New EnglandAster
42	Solidago ohioensis	Ohio Goldenrod
43	Silphium terebinthinaceum	Prairie Dock
44	Kuhnia eupatoriodes	False Boneset
44	Agastache foeniculum	Blue Giant Hyssop
46	Silphium integrifolium deamii	Rosin Weed
	, ,	
47 48	Physostegia virginiana Agastache nepetoides	Obedient Plant Yellow Giant Hys


Species in Lab and Field Trials New Petroleum Remediators Species




NEW SOIL PREP METHODS KEEP ALL MATERIALS ON SITE


TYPICAL SOIL COLUMNS CHICAGO ABANDONED SERVICE STATIONS

D7NEW KNOWLEDGE

INNOVATION + KNOWLEDGE OUTCOMES

THREE YEARS AHEAD OF THE NATIONAL (EPA) MODEL

- The SLOW Cleanup Phyto remediation Program has conceptualized, trialled and built a pilot site concerning innovative brownfields approach
- Interim Use Concept and Asset-based planning is fully developed and implemented in Chicago
- Alternative in situ soil prep methods replace
 "dig and dump" practices
- Connections to urban agriculture and soil building, including management of bioavailability add value to the work undertaken since 2010 at UMBR
- Based on this productive Team partnership, we expect additional fruiting plant studies to be undertaken with Dr. AP Schwab in the near future

NEW SOIL PREPARATION METHODS

1) Successful in-situ soil turning with the Wirtgen 2400 Soil Stabilizer

The soil stabilizer executed the work easily with immediate and dramatic results, including the large gravel and stone as well as compost turning

- The soil stabilizer proved adequately agile to move easily around the site despite its large size
- Smaller sites would be more difficult to till with this machine and also the mobilization fee would make it prohibitive to use it for single parcel sites as individual events, although bundling several sites into one day's work may well be feasible if they are geographically close to each other
- Some delays resulted from the discovery of pipes and artifacts left on site that should have been removed with the LUSTs

2) Lessons Learned

- Remove accumulated top soil from top of pavement first before beginning. Incremental volume of this soil will contaminate the pavement intended for recycling rendering it unrecyclable. Such contaminated pavement is then disposed of in a landfill not kept on site or recycled
- Given the agility and power of the Wirtgen 2400, it is easy to overtill the soil and dissipate the compost, which should remain in the top foot of soil
- Keep it simple. The agility of the Wirtgen can also lead to overconfidence in the staging and maneuvering on site
- Simple and uniform soil processing all over the site is recommended due to staging issue, avoid treating areas with unique methods

NEW REMEDIATOR SPECIES IDENTIFIED

1) Conclusive Plant Findings (see table 1)

- The greenhouse trial was successful despite a number of obstacles
- We observed significant degradation of the petroleum hydrocarbons, and new remediator species emerged.
- Twelve (12) species have been found to enhance dissipation relative to natural attenuation (absence of plants in identical soil, tended identically for the duration of the trial period)
 - i. Purple coneflower, Echinacea purpurEa
 - ii. Blue giant hyssop, Agastache foeniculum
 - iii. Horse mint, Monarda punctata
 - iv. Rattlesnake master, Eryngium yuccifolium
 - v. Alum root, Huechera richarsonii
 - vi. Yellow coneflower, Ratibada pinnata
 - vii. Wild bergamot, Monarda fistulosa
 - viii. Prairie dropseed, Sporobolus heterolepis
 - ix. Yarrow, Achilllea sp.
 - x. Catnip, Nepeta cataria
 - xi. Foxglove beardtongue, *Penstemon digitalis*
 - xii. Evening primrose, Oenothera biennis
- Of these, the only species tested previously was Purple coneflower, Echinacea purpura
- These additional remediator species extend the horticultural and habitat potentials of remediation sites

TABLE 1 - Prarie Forb Final TPH Dissipation Results 8.2012

Species	Species	Total Petroleum Hydrocarbons	Dissipation	Statistical Breaks	
Common Name	Latin name	mg/kg	%	abcde <mark>f</mark> gh <mark>i</mark>	
Purple Coneflower	Echinacea purpurea	1003 a	72.5 a		
Blue Giant Hyssop	Agastache foeniculum	1049 a	71.1 a		
Horse Mint	Monarda punctata	1142 ab	68.7 ab		
Rattlesnake Master	Eryngium yuccifolium	1234 abc	66.1 abc		
Alum Root	Huechera richarsonii	1240 abc	66.0 abc		
Yellow Coneflower	Ratibada pinnata	1283 abc	64.8 abc		
Nild Bergamot	Monarda fistulosa	1396 abc	61.7 abc		
Prairie Dropseed	Sporobolus heterolepis	1432 abc	60.8 abc		
Yarrow	Achilllea sp.	1436 abc	60.6 abc		Statistically
Catnip	Nepeta cataria	1598 bc	56.2 bc		Equivalent Best
Foxglove Beardtongue	Penstemon digitalis	1695 cd	53.5 cd		Remediators
Evening Primrose	Oenothera biennis	1697 d	53.4 cd		
Brown-eyed Susan	Rudbekia triloba	2033 d	44.2 de		
Prairie smoke	Geum triflorum	2050 de	43.8 def		
Obedient Plant	Physostegia virginiana	2088 de	42.7 def		Likely
Ohio goldenrod	solidago ohioensis	2089 de	42.7 def		Remediators. Merits further stu
Black-eyed susan	Rudbeckia subtomentosa	2113 def	42.0 defg		
Purple prairie clover	Petalostemum purpureum	2254 efg	38.1 efgh	▏╸゠╘┨┓┍┊┍┓╸╸╺╺╺╺	
Prairie petunia	Ruellia humulis	2267 efg	37.8 efgh		
Heath Aster	Aster ericoides	2343 efgh	35.7 efghi	1	
Unplanted		2362 efgh	35.2 efghi		
Rough Blazing Star	Liatris aspera	2409 efgh	33.9 efghi		
Yellow Giant Hyssop	Agastache nepetoides	2421 efgh	33.6 efghi		
Common milkweed	Asclepias syriaca	2460 efgh	32.5 efghi		
Prairie dock	Silphium terebinthinaceum	2461 efgh	32.5 efghi		
Culver's root	Veronicastrum virginicum	2473 efgh	32.1 efghi		
Big bluestem	Andropogon gerardii	2489 efgh	31.7 efghi		
Golden Alexander	Zizia aptera	2491 efgh	31.6 efghi		
Hoary Vervain	Verbena stricta	2496 efgh	31.5 efghi		
Prairie Blazing Star	Liatris pycnostachya	2595 fgh	28.8 fghi		
Compass plant	Silphium laciniatum	2647 fgh	27.4 ghi		
Sompass plant	enpinalit la ennatalli				
Pitchers Sage	Salvia azurea var. pitcherii	2678 gh	26.5 hi		. .
· · ·			26.5 hi 26.2 hi		Species appear to
Pitchers Sage Swamp Milkweed	Salvia azurea var. pitcherii	2678 gh			impede remediat
Pitchers Sage	Salvia azurea var. pitcherii Asclepias incaranata	2678 gh 2688 gh	26.2 hi		impede remediat
Pitchers Sage Swamp Milkweed New England Aster	Salvia azurea var. pitcherii Asclepias incaranata Aster novae-angliae	2678 gh 2688 gh 2751 gh	26.2 hi 24.5 hi		impede remediat
Pitchers Sage Swamp Milkweed New England Aster Fall Sunflower	Salvia azurea var. pitcherii Asclepias incaranata Aster novae-angliae Helianthus giganteus	2678 gh 2688 gh 2751 gh 2770 gh	26.2 hi 24.5 hi hi		Species appear to impede remediati Merits further stu
Pitchers Sage Swamp Milkweed New England Aster Tall Sunflower False boneset	Salvia azurea var. pitcherii Asclepias incaranata Aster novae-angliae Helianthus giganteus Kuhnia eupatoriodes	2678 gh 2688 gh 2751 gh 2770 gh 2823 h	26.2 hi 24.5 hi 24.0 hi 22.5 i		impede remediat

[NEW KNOWLEDGE]

2) Plant Findings Needing Further Study (see table 2)

- Sourcing adequate small specimens for such a large number of species proved very complex. Consequently, not all species had adequate specimens for reliable statistical sampling.
- Because only one pot of some species was available, a statistical analysis of the TPH is yet not possible on all species in the Field Trials
- Promising species from this portion of the study include:
- + Black cherry
- + Red-osier dogwood
- + Downy serviceberry
- + Fragrant sumac
- All of the deciduous species in the single specimen group went into winter dormancy very early in the experiment, and the roots were not actively growing. We would expect all of these species to show greater dissipation of TPH if they were growing while active and in a fully replicated experiment. For these species, further study is warranted
- Research was also inconclusive on edibles and woody shrubs trees due to plant availability at testing time
- Challenges included high greenhouse summer heat and frequent handling immediately prior to planting. Many of the plant species being

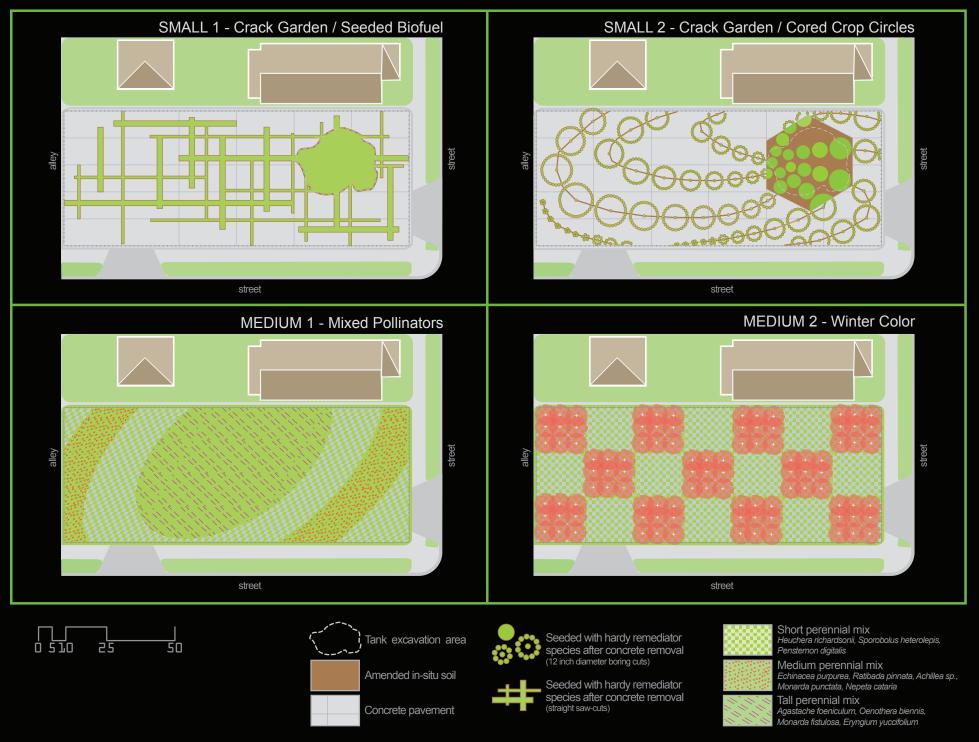
tested responded poorly to being transplanted from peat to soil in the heat of the summer. Some of the species, being deciduous, dropped their leaves early in the experiment and, even though healthy and viable, had not regained their leaves by the time we harvested the soils

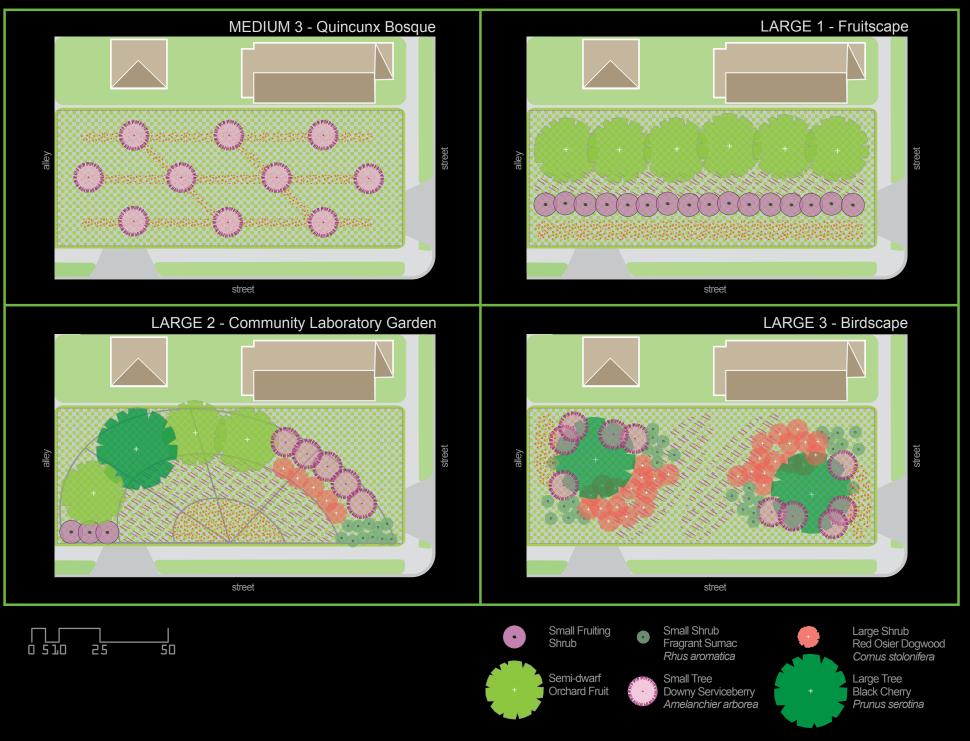
TABLE 2 - Woody Plants Preliminary Findings 8.2012

Residual total petroleum hydrocarbons (TPH) and dissipation of TPH in soils for plant species with single replications. The dissipation calculation is based on the original TPH concentration of 3644 mg/kg. Highlighted species exhibit results (without replication) greater than "Unplanted" control of 35.2% / 2362 mg/kg TPH

Species	Species	ТРН	Dissipation
Common name	Latin name	mg/kg	%
Black cherry	Prunus serotina	2106	42
Red-osier dogwood	Cornus stolonifera C. sericea	2165	41
Downy serviceberry	Amelanchier arborea	2211	39
Fragrant sumac	Rhus aromatica	2270	38
Walnut	Juglans nigra	2423	34
Early wild rose	Rosa blanda	2439	33
Wild plum	Prunus americana	2444	33
Witch hazel	Hamamelis virginiana	2467	32
Elderberry	Sambucus canadensis	2538	30
Black chokeberry	Aronia melanocarpa	2587	29
Dwarf bush honeyscuckle	Diervilla Ionicera	2612	28
Button bush	Cephalanthus occidentalis	2622	28
False indigo	Amorpha fruticosa	2637	28
Prairie willow	Salix humulis	2707	26
American hazelnut	Corylus americana	2690	26
Chinquapin oak	Quercus muelenberghi	2738	25
Redbud	Cercis canadensis	2768	24
Wild black currant	Ribes americana	2771	24
Lead plant	Amorpha canescens	2796	23
Prairie crab	Malus ioensis	2802	23
Paw paw	Asimina triloba	2982	18
Blackhaw viburnum	Viburnum prunifolium	3031	17
Arrowhead viburnum	Viburnum dentatum	3121	14
Common ninebark	Physocarpus opulifolius	3132	14
American persimmon	Diospyros virginiana	3302	9
White oak	Quercus bicolor	3466	5
Common juniper	Juniper communis	3496	4

New Site Designs and Typologies


1) Swatchbook of Phytoscapes


Based on the Summer 2012 results of the Schwab Lab Trials additional site design typologies (swatches) are possible. Design Criteria used to conceptualize the Swatchbook include:

- Maximize the urban landscape design potentials of the particular new remediator species characteristics, height, color, bloom, etc.
- Considerations are given to multiple human and non-human user groups including citizens, students, birds, pollenators
- Varied spatial approaches to the basic challenge that phytoremediation sites require a very dense planting
- Designs address the need for public visibility and safety and participation with visual permeability beyond the required site fences
- Each "swatch" balances aesthetics, "cues to care" and technological approaches
- Emerging discourses on future land uses addressed include: urban agriculture, arbor-culture, biofuel production, and civic engagement
- Examples of each scale design typology (Small, Medium, Large) are modeled based on preliminary new remediator results and above criteria

SWATCHBOOK Landscape Typologies From New Petroleum Remediator Species - See Illustrations on following pages.

SCALE	TYPOLOGY	DESCRIPTION
SMALL 1	Crack garden/ Seeded biofuel	Gridded sawcut removal of concrete emerging from the tank excavation area, is inter-planted with known, annual, monocot remediator, <i>Switchgrass or Big Bluestem</i> , to be harvested as biofuel experiment annually
SMALL 2	Crack Garden/ Cored Crop Circles	Leaving concrete in place, cores are created in decorative patterns, removed and planted with vigorous rooted, perennial, remediators such as Prairie Dropseed (<i>Sporobolus heterolepis</i>)
MEDIUM 1	Mixed Pollinators	Perennial forb species identified from Lab Trials are sorted by height into 3 perennial "mixes" and planted in large decorative swathes on prepared soil with concrete removed
MEDIUM 2	Winter Color	Red Osier dogwood forms the basis of a checked grid for striking winter color. Alternate green "checks" can be planted with any other species, such as <i>Rhus aromatica</i> , <i>Sporobolus heterolepis, Huechera richardsonii</i>
MEDIUM 3	Quincunx Bosque	Amelanchier arborea, or any small tree, is under-planted with short and medium perennial mixes along diagonal sightlines. Effective on prominent corners where two sight lines are available
LARGE 1	Fruit-scape	Edible fruit trees and shrubs, planted in orchard style <i>allees</i> are under- planted with perennial mixes, which should clean petroleum prior to the appearance of fruit (requires an additional fruiting plant study)
LARGE 2	Community Laboratory Garden	A radial grid, oriented towards the main streetscape makes legible the civic experiment, providing visual access and participation. Plants can be sited by height or bloom time to support a variety of types of programming.
LARGE 3	Bird-scape	<i>Prunus serotina</i> (black cherry) forms the basis of a bird-friendly "layered" landscape, under-planted with tall and short shrubs, <i>Amelanchier, Rhus aromatic</i> , alongside grasses and seed producers such as <i>Sporobolus heterolepis, Rudbekia triloba</i> and <i>Ratibada pinnata</i>

Eryngium yuccifolium plugs ready for planting

WHILE AT

DBRECOMMENDATIONS

PHYTOREMEDIATION RECOMMENDATIONS

Although the value of phytoremediation is well-recognized, scientific investigations on the subject has become more of a niche rather than focused research efforts. The excitement that it once enjoyed, that included large, well-funded projects, has subsided. The decreased enthusiasm for phytoremediation is a product of success and economics:

a) Plant species have been identified for nearly every remediation target, whether organic or inorganic

b) The misconception exists that phytoremediation is easy and requires very little expertise to successfully execute challenging remediation projects

c) Compared to more heavily engineered projects or even "dig, haul, and landfill", the opportunity for profit is small; thus, despite the high probability for success, it is not an attractive alternative for private companies

d) Phytoremediation is slow compared to many of the existing remediation solutions

As a result, focused applications (such as this project) are faced with the promise that phytoremediation should be successful combined with a lack of details about how to execute the project. This is particularly true if the project envisions using plant species that have not been tested previously.

1) Soil and Site Conditions

- Carefully consider fill material for tank excavation—restore native soils as appropriate to ensure flexibility in site re-use into the future
- Remove and recycle all pavement when tanks are removed to promote natural attenuation
- Consider quantity and type of pavement on site to assess practicality
- Develop a range of soil treatment equipment uses similar to Wirtgen 2400 for different scaled sites
- Avoid soil compaction by excessive use of soil prep and grading equipment
- Don't create an overly complex site staging as complexities evolve with typical site contingencies
- Develop "Decision Trees" for the above scenarios
- Georeference soil borings and clean up measures so that future monitoring is more accurate

2) Plants and Designs

- Be sure landscape personnel implementing design understand that phytoremediation is not conventional landscape design and that design may differ from standard practices in density and type
- Use phytoremediation only on sites with adequate soils.
- Integrate Phytoremediation Planning into Soil Re-use and Land-use Programs as they evolve
- Establish a soil recycling facility in vicinity (Chicago) to facilitate the above
- Consider adjacencies to other natural and green space corridors and patches as described in the Chicago Wildlife Plan
- Consider plant and labor availability in site design decisions
- Consider drainage and porosity of site soils with site design and plant selection

[RECOMMENDATIONS]

3) Implementation Budget

- The direct costs of labor, material, equipment, and plant materials are significantly lower than originally predicted for a "Large" typology
- However, the "in-kind" costs, including: City Staff, A.P. Schwab Lab, Greencorp trainee labor, and SAIC student labor could easily double the cost of such a complex installation if it were procured exclusively from commercial vendors
- Conversely, if a systemic assessment method were established that was capable of tracking social and intangible value added, the over all "cost" of the project would likely reflect the "net-benefits" gained
- The direct cost of implementing this type of remediation/revitalization effort compared to the untracked costs of leaving site partially un-developed needs further study

4) Socio-Cultural

- Due to the dynamic nature of City government, establishing firm partnerships and stewardship plans prior to implementation is crucial
- Choose site designs based on adjacent partners, aesthetic preferences and site locations to ensure community participation and to enhance social capital and value from all types of projects
- Fencing and signage may improve public perception of sites even without ongoing tending

ASSESSMENT RECOMMENDATIONS

Assessment of the SLOW Cleanup Remediation Program Concept is impossible until implementation of new typologies is undertaken and appropriate assessment measures are developed. To fully understand the potentials of whole systems integrative approaches we recommend the following:

- Integrative assessment models such as Life Cycle Assessment should be developed in relation to different site typologies, costs and criteria
- Dynamic Modeling and Participatory Assessment should be considered as a reflection of contemporary best community practices
- Assessment of the innovation outcomes could be developed for future use as other academic and cultural partnerships evolve
- Publication of scientific results will be assessed via the "peer to peer review" process utilized by academic and scholarly research institutions and publications. We anticipate publications on the scientific trials and findings within the next two academic year cycles (2012-2014)

KNOWLEDGE AND INNOVATION RECOMMENDATIONS

- Partnerships with local academic institutions interested in civic engagement and noncommercial perspectives may benefit city initiatives by bringing new perspectives earlier in the process
- Research questions and new implementation methods that are beneficial to cities may have little commercial value but contribute greatly to social, cultural and environmental conditions and capitals
- Important non-commercial research leader ship can be accomplished through innovative partnerships between unlikely partners committed to systemic approaches and the public good.

O J NEXT STEPS

EXTENSIONS

Several extensions are underway of the inter-institutional collaboration, ideas related to the use of artists in planning efforts, and further initiatives to extend the phytoremediation studies. These include:

Several opportunities exist to integrate the SLOW Cleanup findings into City Planning efforts:

- Connect to Chicago Public School Science and Service Learning around plant indicators and remediators for CPS garden sites
- Department of Cultural Affairs and Special Events (DCASE) and SAIC are discussing how to collaborate on the DCASE initiative to "integrate arts and culture into planning" citywide
- Department of Housing and Economic Development (DHED) and SAIC are discussing ways to integrate these approaches into the Green Healthy Neighborhood (GHN) landuse strategy for Englewood, West Englewood, Washington Park, and Woodlawn, to establish several phyto test sites
- Partnering with NeighborSpace and the City, evolve a multi-community program to site phyto "swatch" sites throughout the city, in relation to appropriate neighborhoods, stakeholders, and institutions

Funding opportunities being explored by SAIC

- + DHED-Planning + DCASE include:
- Current grant opportunities are under consideration to establish sites in GHN Area
- Field Museum Staff or Forest Service staff could provide required sociological components of Grants as required
- This development could move the project to a LCA assessment model as described above
- Federal Grant opportunities through the NEA, including Our Town Grants, are being investigated. We anticipate applying in the next funding cycle for work in Englewood

Phytoremediation at Big Marsh Calumet

- The SLOW Cleanup Team (CDoE UMBR + Frances Whitehead, SAIC + Dr. AP Schwab, Purdue University) were awarded a grant in 2010 by the USDA, Urban and Community Forestry Program in the amount of \$193,595
- The Project Title: Use of Trees and other Vegetation in the Remediation of Brownfields: Big Marsh Property of Lake Calumet Area

This successful grant application demonstrates the funding potential for this whole systems approach at other types of sites in the Chicago Area

Further Plant Species Petroleum Remediation Studies

- Conversations have begun with Dr. AP Schwab concerning further analysis and publication of Lab and Field Trial Results
- Additional avenues will be sought to execute a replicated study of both woody species and edibles fruit species left inconclusive by this study
- A extensive fruiting plant study is expected to begin in Fall 2013-2016 under Dr. Schwab at Texas A&M University, with Field Trials in Chicago
- Schwab, Graham and Whitehead will begin publication of scientific results in 2013

LODISSEMINATION

The COLLABORATION, PROJECTS, AND OUT-COMES will be published as opportunities arise and data is analyzed. We anticipate a *SLOW Cleanup* website to be developed in the future. To date, findings have been presented at the following multi-disciplinary conferences and publications:

Ingram, Mrill. Sculpting Solutions: Art-Science Collaborations in Sustainability, VENV: Environment: Science and Policy for Sustainable Development, July/ Aug 2012, Vol 54 No. 4, pages 24-35. http://www.environmentmagazine.org/Archives/ Back%20Issues/2012/July-August%202012/sculpting-abstract.html

Newcombe, Jodi. The Art of the Eco-City, Working with Artists to Further Urban Sustainability. Report for the City of Melbourne, International Case Study 3, page 17-18, April 2012.

http://www.carbonarts.org/projects/the-art-of-the-eco-city/

Ingram, Mrill, The Diplomacy of Art: what ecological artists offer environmental politics, Art, Science and Geographical Imaginaries (4): Practice and Publics. Royal Geographers Conference, London, 2012. http://www.rgs.org/HomePage.htm,

► Ingram, Mrill. Politics of Art and Alchemy at an Abandoned Gas Station, Chicago, Inhabiting the Micro Panel, American Association of Geographers, Feb 2012, NYC. http://www.aag.org/cs/annualmeeting/program Whitehead, Frances. 51 Declarations for the Future: A Manifesto for Artists + NOTES on the Manifesto" Opening essay for The New Earthwork: Art, Action, Agency," ISC Press, (2012). Edited by Twylene Moyer and Glenn Harper. fig. pg 16-20.

http://sculpture.gostorego.com/new-earth-works.html

Whitehead, Frances, What Do Artists Know?,
 Princeton University School of Architecture magazine,
 Pidgin, Vol 12 (Spring 2012).
 http://www.pidgin-magazine.net/

Whitehead, Frances; Graham, David S.; Schwab, AP. Integrating Aesthetics and Technology in the Remediation of Soils at Abandoned Gas Stations. US EPA Sustainable Remediation 2011 Conference, June 1-3, 2011, University of Massachusetts, Amherst. http://www.umass.edu/tei/conferences/SustainableRemediation/

Whitehead, Frances, The Embedded Artist as New Knowledge Producer, College Art Association 2011 Conference, Panel: Artmaking as New Knowledge: Research, Practice, Production, organized by Derek Conrad and Soraya Murray, UCDS. http://conference.collegeart.org/2011/

► Englestad, Janeil, Make Art with Purpose, Interview, Project Page 2011.

http://www.makeartwithpurpose.net/projects. php?id=15&tp=0

 Art- Science: Collaboration, Bodies, Environments: Case Study 2011- ongoing. http://artscience.arizona.edu/research_site_slowcleanup.html ▶ Whitehead, Frances, Post- Normal Cultural Heritage, Welsh College of Architecture, Cardiff, Wales, Symposium -The Post- industrial City, Invited participant funded by British Council, 2011.

Whitehead, Frances; Atha, Christine. Complexity and Engagement: Art and Design in the Post Industrial, MADE- Materials, Architecture, Design, Environment, Welsh School of Architecture Publication, Volume 6, 2010, p.42-51, fig. http://cardiff.ac.uk/archi/made.php

Whitehead, Frances; Matthew Guillford. "Climate Change : Culture Change Innovation and Agency from the Knowledge of Artists", Research and Creativity: Next Claiming Creativity - Art education in cultural transition, European League of Institutes of Art Annual Conference, Columbia College, Chicago, April 2010.

http://eliaartschools.wordpress.com/category/claiming-creativity/

Ise, Claudine. ART:21 Blog Frances Whitehead, Embedded Artist, feature on recent public works, 2010. http://blog.art21.org/2010/08/24/frances-whitehead-embedded-artist/

APPENDIX

A digital appendix of supporting documentation accompanies this Final Grant Report to the City of Chicago. This documentation is not included in all printed copies of the Report due to copyright and confidentiality obligations.

				-			
and an of a did tog of what what we ap	Considerate May	rodenare you	ignal altraphic and in and	user reveluced	Sievel a	downspile and	Arrow .
62 14.90 4.99 14.97 25.17 2.51	4 70 04	112 1	4.00 4.94 14.	Cap I is cheer extent	252	dradispile and	56
	4.57 6	BIK2 1	14.78 - 14.	71 40,77	2:52	4.51	67
Ch 11.61 1.01 31.71 0.55	4.65 04	EA 4,	110->AP54/1	ad lighting 13			
	4.32 07	52	14.80 5.11 14	63 34.80	2.54 6	4.52	E8
G 6 15.9 5.14 15.03 34.59 2.58 G 6 15.9 5.13 15.15 34.59 2.52	4.55	a second s		12 37.08		4,58	E9
and the second shirt of he	4.83 9	53		181 36.24		4.46	Elo
	4.81 4.56	54	01 07	1.88 3803	2.56	4.55	F1 F2
	1.36	K1 K2	14 81	177 36.92		474	F3
APS 4/10 NOTE: New Etracosane 4/100048	- 125ml		1,00 10	1.67 37.38	2.50	4.49	F3 F4
G9 1496 4.92 1468 2713 - C		K3		1.54 37.28		4.56	Fh
GIO 1500 501 1465 22.54 255 1	1.60	K4	-1 1.12	171 37,51	2.51	4.46	
GII 14,93 5,03 1467 34,26 ,50 ,	1.67	11		4.66 37.3		4.42 4.59	F6 F7
G12 1419 503 1100 2Km	4.48	L2		4.80 37.5'			FB
G12-2 14,86 5,08 14,85 3/92 256	4.77	113					F9
HI 1468 Ede un and	7.62	LY.	Contraction of the local division of the loc	14.84 37.4			FP
H2 1482499 1462 220 1	4.56	MI	14.71 5.00	14.89 36	27 2.5	1 4.51	
H3 1412 FOR 1100 2001	1.50	M2	14.64 4.96	14.76 37:			G
1/11 11211 1100 3/126 2.52	4,99	M2-2	14.85 5.01	1472 37:			65
F1 W22 F02 W11 2012 2.49	4.29	BIKAH	14.77 -	14.76 40	164 2.5	7 4.73	G3
1 104 3110 2 2,36	4.39	M3	14.73 5.01				
E2 14.66 500 14.96 38.18 252	4.37	MY	14.65 5.03				
+3 1482 504 1458 3214 2.55	4.55	N1	14.92 5.00	-	1		
14 14.19 600 1100 2000		NZ	14.76 4.99				
11 1482 500 416 2000	4.57		to the second				
3.1 1132 5:02 14.65 37,83 2.50	4.76 0		14.69 5.01	1			
- Illion - I - I - I - I - I - I - I - I - I -		NY.	14.78 5.01				and and a